题目内容

【题目】如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s,动点Q从点B出发,沿BC方向运动,速度是1cm/s.

(1)几秒后P,Q两点相距25cm?
(2)几秒后△PCQ与△ABC相似?
(3)设△CPQ的面积为S1 , △ABC的面积为S2 , 在运动过程中是否存在某一时刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,则说明理由.

【答案】
(1)

解:设x秒后P、Q两点相距25cm,

则CP=2xcm,CQ=(25﹣x)cm,

由题意得,(2x)2+(25﹣x)2=252

解得,x1=10,x2=0(舍去),

则10秒后P、Q两点相距25cm


(2)

解:设y秒后△PCQ与△ABC相似,

当△PCQ∽△ACB时, = ,即 =

解得,y=

当△PCQ∽△BCA时, = ,即 =

解得,y=

秒或 秒后△PCQ与△ABC相似


(3)

解:△CPQ的面积为S1= ×CQ×CP= ×2t×(25﹣t)=﹣t2+25t,

△ABC的面积为S2= ×AC×BC=375,

由题意得,5(﹣t2+25t)=375×2,

解得,t1=10,t2=15,

故运动10秒或15秒时,S1:S2=2:5


【解析】(1)设x秒后P、Q两点相距25cm,用x表示出CP、CQ,根据勾股定理列出方程,解方程即可;(2)分△PCQ∽△ACB和△PCQ∽△BCA两种情况,根据相似三角形的性质列出关系式,解方程即可;(3)用t分别表示出CP、CQ,根据题意列出方程,解方程即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网