题目内容
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=x m.
(1)若矩形花园ABCD的面积为165m2,求 x的值;
(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.
【答案】(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.
【解析】
(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;
(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.
(1)∵AB=xm,则BC=(26﹣x)m,
∴x(26﹣x)=165,
解得:x1=11,x2=15,
答:x的值为11m或15m;
(2)由题意可得出:
S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,
由题意得:14≤x≤19,
∵-1<0,14≤x≤19,
∴S随着x的增大而减小,
∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,
答:花园面积S的最大值为168平方米.
练习册系列答案
相关题目