题目内容
【题目】如图,已知直线y1=﹣x+3与x轴交于点B,与y轴交于点C,抛物y2=ax2+bx+c经过点B,C并与x轴交于点A(﹣1,0).
(1)求抛物线解析式,并求出抛物线的顶点D坐标 ;
(2)当y2<0时、请直接写出x的取值范围 ;
(3)当y1<y2时、请直接写出x的取值范围 ;
(4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式 .
【答案】(1);(2)x<﹣1或x>3;(3)0<x<3;(4)y=x2+2x+1.
【解析】
(1)列方程得到C(0,3),B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),列方程即可得到结论;
(2)由图象即可得到结论;
(3)由图象即可得到结论;
(4)当根据平移的性质即可得到结论.
解:(1)对于y1=﹣x+3,当x=0时,y=3,
∴C(0,3),
当y=0时,x=3,
∴B(3,0),
∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,
设抛物线解析式为y=a(x+1)(x﹣3),
抛物线过点C(0,3),
∴3=a(0+1)(0﹣3),
解得:a=1,
∴y=(x+1)(x﹣3)=x+2x+3,
∴顶点D(1,4);
(2)由图象知,当y2<0时、x的取值范围为:x<﹣1或x>3;
(3)由图象知当y1<y2时、x的取值范围为:0<x<3;
(4)当x=1时,y=﹣1+3=2,
∵抛物线向下平移2个单位,
∴抛物线解析式为y=﹣x2+2x+3﹣2=﹣x2+2x+1.
故答案为:(1)(1,4);(2)x<﹣1或x>3;(3)0<x<3;(4)y=x2+2x+1.
练习册系列答案
相关题目