题目内容

【题目】已知:如图,在四边形ABCD中,ADBC,点ECD边上一点,AEBE分别为∠DAB和∠CBA的平分线.

(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);

(2)(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sinAGF=,求⊙O的半径.

【答案】(1)作图见解析;(2)⊙O的半径为.

【解析】

(1)作出相应的图形,如图所示;

(2)由平行四边形的对边平行得到ADBC平行,可得同旁内角互补,再由AEBE为角平分线,可得出AEBE垂直,利用直径所对的圆周角为直角,得到AFFB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.

解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).

(2)ADBC,

∴∠DAB+CBA=180°.

AEBE分别为∠DAB与∠CBA的平分线,

∴∠EAB+EBA=90°,

∴∠AEB=90°.

AB为⊙O的直径,点F在⊙O上,

∴∠AFB=90°,∴∠FAG+FGA=90°.

AE平分∠DAB,

∴∠FAG=EAB,∴∠AGF=ABE,

sinABE=sinAGF=.

AE=4,AB=5,

∴⊙O的半径为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网