题目内容

【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

【答案】
(1)证明:连接OC,

∵OA=OC,

∴∠OCA=∠OAC,

∵AC平分∠PAE,

∴∠DAC=∠CAO,

∴∠DAC=∠OCA,

∴PB∥OC,

∵CD⊥PA,

∴CD⊥OC,CO为⊙O半径,

∴CD为⊙O的切线


(2)解:过O作OF⊥AB,垂足为F,

∴∠OCD=∠CDA=∠OFD=90°,

∴四边形DCOF为矩形,

∴OC=FD,OF=CD.

∵DC+DA=6,

设AD=x,则OF=CD=6﹣x,

∵⊙O的直径为10,

∴DF=OC=5,

∴AF=5﹣x,

在Rt△AOF中,由勾股定理得AF2+OF2=OA2

即(5﹣x)2+(6﹣x)2=25,

化简得x2﹣11x+18=0,

解得x1=2,x2=9.

∵CD=6﹣x大于0,故x=9舍去,

∴x=2,

从而AD=2,AF=5﹣2=3,

∵OF⊥AB,由垂径定理知,F为AB的中点,

∴AB=2AF=6.


【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5﹣x)2+(6﹣x)2=25,从而求得x的值,由勾股定理得出AB的长.
【考点精析】利用勾股定理的概念和垂径定理对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网