题目内容
【题目】若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是( )
A.k≥1
B.k>1
C.k<1
D.k≤1
【答案】D
【解析】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,
∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,
解得:k≤1.
故选:D.
【考点精析】解答此题的关键在于理解求根公式的相关知识,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根.
练习册系列答案
相关题目