题目内容
【题目】如图,矩形ABCD中,点E,F分别在边AD,CD上,且EF⊥BE,EF=BE,△DEF的外接圆⊙O恰好切BC于点G,BF交⊙O于点H,连结DH.若AB=8,则DH=_____.
【答案】7
【解析】
如图,连接OG,反向延长交DE于M,连接EH,过H作HN//BC,HP//CF,根据AAS可证明△BAE≌△EDF,即可得出DE=AB=8,由切线性质可知OG⊥BC,OM⊥DE,MG=AB=8,
由垂径定理可得ME的长,利用勾股定理可求出OE的长,进而可得OM的长,根据中位线的性质可得DF的长,根据等腰三角形的性质可得BH=HF,由HN//BC,HP//CF,∠C=90°可判定四边形HPCN是矩形,进而可得HP是△BFC的中位线,即可求出FN的长,进而可得DN的长,由圆周角定理可得∠EDH=45°,即可求出∠HDN=45°,即可证明△DHN是等腰直角三角形,即可求出DH的长.
如图,连接OG,反向延长交DE于M,连接EH,过H作HN//BC,HP//CF,
∵∠BEF=90°,ABCD是矩形,
∴∠ABE+∠AEB=90°,∠DEF+∠AEB=90°,
∴∠ABE=∠DEF,
又∵BE=EF,∠BAE=∠EDF=90°,
∴△BAE≌△EDF,
∴DE=AB=8,
∵⊙O切BC于G,
∴OG⊥BC,OM⊥DE,MG=AB=8,
∴ME=DE=4,
在Rt△OEM中,OE2=OM2+ME2,即OE2=(8-OE)2+42,
解得:OE=5,
∴OM=3,
∵OM是△DEF的中位线,
∴DF=2OM=6,
∴CF=8-6=2,
∵∠EDF=90°,⊙O是△DEF的外接圆,
∴EF是⊙O的直径,
∴∠EHF=90°,
∵BE=EF,
∴BH=HF,
∵HN//BC,HP//CF,∠C=90°,
∴四边形HPCN是矩形,
∴PH是△BFC的中位线,
∴PH=CN,PH=CF,
∴CN=1,FN=1,
∴DN=6+1=7,
∵∠BFE=∠EDH=45°,∠EDF=90°,
∴∠HDN=45°,
∴△DHN是等腰直角三角形,
∴DH=DN=7.
故答案为:7
【题目】某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.