题目内容

【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),直接写出线段AD与NE的数量关系为

(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),判断△ACN是什么特殊三角形并说明理由.

(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.若AC=3 ,AD=1,则四边形ACEN的面积为

【答案】
(1)AD=NE
(2)解:(2)结论:△ACN为等腰直角三角形.

理由,如图2,

∵△BAD和△BCE均为等腰直角三角形,

∴AB=AD,CB=CE,∠CBE=∠CEB=45°.

∵AD∥NE,

∴∠DAE+∠NEA=180°.

∵∠DAE=90°,

∴∠NEA=90°.

∴∠NEC=135°.

∵A,B,E三点在同一直线上,

∴∠ABC=180°﹣∠CBE=135°.

∴∠ABC=∠NEC.

∵△ADM≌△NEM(已证),

∴AD=NE.

∵AD=AB,

∴AB=NE.

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN为等腰直角三角形


(3)
【解析】解:(1)结论:AD=NE.

理由:如图1,

∵EN∥AD,

∴∠MAD=∠MNE,∠ADM=∠NEM.

∵点M为DE的中点,

∴DM=EM.

在△ADM和△NEM中,

∴△ADM≌△NEM.

∴AD=NE.

解:(3)如图3中,连接CM.

∵AD∥NE,M为中点,

∴易得△ADM≌△NEM,

∴AD=NE.

∵AD=AB,

∴AB=NE,

∵AD∥NE,

∴AF⊥NE,

在四边形BCEF中,

∵∠BCE=∠BFE=90°

∴∠FBC+∠FEC=360°﹣180°=180°

∵∠FBC+∠ABC=180°

∴∠ABC=∠FEC

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN为等腰直角三角形,

由(1)可知,△AMD≌△NME,

∴AM=MN,AD=NE=1,

∴CM⊥AN,AM=CM=MN,

∵AC=3

∴AM=CM=MN=3,

∴S四边形ACNE=SAMC+S直角梯形MNEC= ×3×3+ ×(3+1)×3=

所以答案是

【考点精析】通过灵活运用旋转的性质,掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网