题目内容
【题目】解答下列各题:
(1)解方程:(x+2)(x+3)=2x+16
(2)已知a、b、c均为非零的实数,且满足,求的值.
【答案】(1) x1=2,x2=﹣5;(2)8或-1
【解析】
(1)先展开,再合并同类项,根据因式分解法解方程即可求解;
(2)根据比例的等比性质解决分式问题.注意分两种情况:a+b+c≠0;a+b+c=0进行讨论.本题还可以设参数法解答.
(1)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5;
(2)①若a+b+c≠0,由等比性质有1,所以a+b﹣c=c,a﹣b+c=b,﹣a+b+c=a,∴a+b=2c,a +c=2b,b+c=2a,于是有8.
②若a+b+c=0,则a+b=﹣c,b+c=﹣a,c+a=﹣b,于是有1.
综上所述:的值为8或-1.
练习册系列答案
相关题目
【题目】一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:
实验次数n | 20 | 60 | 100 | 120 | 140 | 160 | 500 | 1000 | 2000 | 5000 |
“兵”字面朝上次数m | 14 | 38 | 52 | 66 | 78 | 88 | 280 | 550 | 1100 | 2750 |
“兵”字面朝上频率 |
下面有三个推断:投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是;随着实验次数的增加,“兵”字面朝上的频率总在附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是;当实验次数为200次时,“兵”字面朝上的频率一定是其中合理的是
A. B. C. D.