题目内容

如图,在平面直角坐标系中,两个函数y=x,y=-
12
x+6的图象交于点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S.
(1)求点A的坐标.
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.
(3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.
(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的精英家教网条件是
 
分析:(1)因为两个函数y=x,y=-
1
2
x+6的图象交于点A,所以将两个函数的解析式联立,得到方程组,解之即可;
(2)因为点P在直线OA即y=x上以每秒1个单位的速度运动,所以OP=t,而OA是第一、三象限坐标轴夹角的平分线,所以点P坐标为(
2
2
t,
2
2
t)
,又因PQ∥x轴交直线BC于点Q,所以可得点Q的纵坐标为
2
2
t
,并且点Q在y=-
1
2
x+6上,因此可得到关于x、t的关系式,经过变形可用t表示x,即得到点Q坐标为(12-
2
t,
2
2
t)
PQ=12-
3
2
2
t
,当重叠部分是正方形时,分情况代入面积公式中求解;
(3)结合(2)中的关系式可知有最大值,并且最大值应在0<t≤3
2
中,利用二次函数最值的求法就可得到S的最大值为12;
(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积正好最大时,此时重合部分就是△AOB,B的坐标为(12,0),并且有PB⊥OB,PB=OB=12,所以OP=12
2
,即t≥12
2
解答:精英家教网解:(1)由
y=x
y=-
1
2
x+6
可得
x=4
y=4

∴A(4,4);

(2)点P在y=x上,OP=t,
则点P坐标为(
2
2
t,
2
2
t)

点Q的纵坐标为
2
2
t
,并且点Q在y=-
1
2
x+6上,
2
2
t=-
1
2
x+6,x=12-
2
t

即点Q坐标为(12-
2
t,
2
2
t)
PQ=12-
3
2
2
t

12-
3
2
2
t=
2
2
t
时,t=3
2

0<t≤3
2
时,S=
2
2
t(12-
3
2
2
t)=-
3
2
t2+6
2
t

当点P到达A点时,t=4
2

3
2
<t<4
2
时,S=(12-
3
2
2
t)2

=
9
2
t2-36
2
t+144


(3)有最大值,最大值应在0<t≤3
2
中,
S=-
3
2
t2+6
2
t=-
3
2
(t2-4
2
t+8)+12=-
3
2
(t-2
2
)2+12

t=2
2
时,S的最大值为12;

(4)当正方形PQMN与△OAB重叠部分面积正好最大时,此时重合部分就是△AOB,
∵B的坐标为(12,0),PB⊥OB,
∴PB=OB=12,
∴OP=12
2

∴t≥12
2
点评:解决本题这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网