题目内容
【题目】课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:
延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形或全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(3)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作∠EDF为60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
【答案】见解析
【解析】
试题分析:(2)①首先延长FD到G,使得DG=DF,进而得出CF=BG,DF=DG,以及EF=EG,再利用三角形三边关系得出答案;
②由①知∠FCD=∠DBG,EF=EG,再利用勾股定理得出答案;
(3)利用全等三角形的判定与性质得出△DEG≌△DEF(SAS),进而得出EF=EG=BE+BG,即EF=BE+CF,进而得出答案.
(2)证明:①如答题图1,延长FD到G,使得DG=DF,连接BG、EG.
则CF=BG,DF=DG,
∵DE⊥DF,∴EF=EG.
在△BEG中,BE+BG>EG,即BE+CF>EF.
解:②若∠A=90°,则∠EBC+∠FCB=90°,
由①知∠FCD=∠DBG,EF=EG,
∴∠EBC+∠DBG=90°,即∠EBG=90°,
∴在Rt△EBG中,BE2+BG2=EG2,
∴BE2+CF2=EF2;
(3)解:如答题图2,将△DCF绕点D逆时针旋转120°得到△DBG.
∵∠C+∠ABD=180°,∠4=∠C,
∴∠4+∠ABD=180°,
∴点E、B、G在同一直线上.
∵∠3=∠1,∠BDC=120°,∠EDF=60°,
∴∠1+∠2=60°,故∠2+∠3=60°,即∠EDG=60°
∴∠EDF=∠EDG=60°,
在△DEG和△DEF中,
∴△DEG≌△DEF(SAS),
∴EF=EG=BE+BG,即EF=BE+CF.