题目内容
【题目】在平面直角坐标系中,抛物线与轴交于点,.
(1)若,求的值;
(2)过点作与轴平行的直线,交抛物线于点,.当时,求的取值范围.
【答案】(1);(2)的取值范围为或.
【解析】
(1)先求出抛物线的对称轴,利用对称性求出A、B的坐标,然后把点代入抛物线,即可求出m的值;
(2)根据根的判别式得到m的范围,再结合,然后分为:①开口向上,②开口向下,两种情况进行分析,即可得到答案.
解:(1)抛物线对称轴为直线.
∴点关于直线对称,
∵
抛物线与轴交于点,
将代入中,
得,
∴;
(2)抛物线与轴有两个交点
∴,即,
解得:或;
①若,开口向上,如图,
当时,有,
解得:;
∵或,
∴;
②若,开口向下,如图,
当时,有,
解得:,
∵或,
∴;
综上所述,的取值范围为:或.
练习册系列答案
相关题目