题目内容
【题目】某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:
(1)求出足球和篮球的单价;
(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?
(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?
【答案】
(1)解:设足球的单价为x元,则篮球的单价为(x+20)元,
根据题意,得8x+14(x+20)=1600,
解得:x=60,x+20=80.
即足球的单价为60元,则篮球的单价为80元;
(2)解:设购进足球y个,则购进篮球(50﹣y)个.
根据题意,得 ,
解得: ,
∵y为整数,
∴y=38,39,40.
当y=38,50﹣y=12;
当y=39,50﹣y=11;
当y=40,50﹣y=10.
故有三种方案:
方案一:购进足球38个,则购进篮球12个;
方案二:购进足球39个,则购进篮球11个;
方案三:购进足球40个,则购进篮球10个;
(3)解:商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);
商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);
商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).
故第二次购买方案中,方案一商家获利最多
【解析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.
【考点精析】本题主要考查了一元一次不等式组的应用的相关知识点,需要掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案才能正确解答此题.
【题目】某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:
服装统一 | 动作整齐 | 动作准确 | |
初二(1)班 | |||
初二(2)班 | |||
初二(3)班 |
(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.
(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为,那么这三个班的排名顺序怎样?为什么?
(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?