题目内容
【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.
【答案】2.
【解析】
根据OA、OC的长度结合矩形的性质即可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.
解:∵OA=1,OC=6,四边形OABC是矩形,
∴点B的坐标为(1,6),
∵反比例函数y=的图象过点B,
∴k=1×6=6.
设正方形ADEF的边长为a(a>0),
则点E的坐标为(1+a,a),
∵反比例函数y=的图象过点E,
∴a(1+a)=6,
解得:a=2或a=-3(舍去),
∴正方形ADEF的边长为2.
练习册系列答案
相关题目