题目内容
【题目】如图,AB、CD分别与半圆OO切于点A,D,BC切⊙O于点E.若AB=4,CD=9,则⊙O的半径为( )
A. 12 B. C. 6 D. 5
【答案】C
【解析】
过B作CD的垂线,设垂足为F;由切线长定理知:BA=BE,CE=CD;即BC=AB+CD;在构建的Rt△BFC中,BC=AB+CD,CF=CD-AB,根据勾股定理即可求出BF即圆的直径,进而可求出⊙O的半径
过B作BF⊥CD于F,
∵AB、CD与半圆O切于A、D,
∴∠BAD=∠CDA=∠BFD=90°,
∴四边形ADFB为矩形,
∴AB=DF,BF=AD,
∵AB=BE=4,CD=CE=9;
∴BC=BE+CE=13;
∵AB、CD与半圆O相切,
∴四边形ADFB为矩形;
∴CF=CD-FD=9-4=5,
在Rt△BFC中,BF===12,
∴AD=BF=12,
∴⊙O的半径为6.
故选:C.
练习册系列答案
相关题目