题目内容
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:

(1)D是BC的中点;
(2)△BEC∽△ADC.

(1)D是BC的中点;
(2)△BEC∽△ADC.
(1)(2)见解析
证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,∴D是BC的中点;
(2)∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,
即∠CEB=∠CDA=90°,
∵∠C是公共角,∴△BEC∽△ADC.

练习册系列答案
相关题目