题目内容
【题目】(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为________.
(2)已知的周长为24,,于点D,若的周长为20,则AD的长为________.
(3)已知等腰三角形的周长为24,腰长为x,则x的取值范围是________.
【答案】4cm或8cm 8
【解析】
(1)根据题意画出图形,由题意得 ,即可得 ,又由等腰三角形的底边长为6cm,即可求得答案.
(2)由△ABC的周长为24得到AB,BC的关系,由△ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值.
(3)设底边长为y,再由三角形的三边关系即可得出答案.
(1)如图, ,BD是中线
由题意得存在两种情况:①②
①,
∵
∴
②,
∵
∴
∴腰长为:4cm或8cm
故答案为:4cm或8cm.
(2)∵△ABC的周长为24,
∴
∵
∴
∴
∴
∵的周长为20
∴
∴
故答案为:8.
(3)设底边长为y
∵等腰三角形的周长为24,腰长为x
∴
∴ ,即
解得
故答案为:.
练习册系列答案
相关题目