题目内容
【题目】已知数轴上点A表示的数为6,B是数轴上在左侧的一点,且A,B两点间的距离为10。动点P从点A出发,以每秒6个单位长度的度沿数轴向左匀速运动,设运动时间为t秒。
(1)数轴上点B表示的数是______;当点P运动到AB的中点时,它所表示的数是_____。
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,求:
①当点P运动多少秒时,点P追上点Q?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
【答案】(1)-4,1(2)①当点P运动2.5秒时,点P追上点Q;②当点P运动0.5秒或4.5秒时,点P与点Q间的距离为8个单位长度.
【解析】
(1)由已知得OA=6,则OB=AB-OA=4,写出数轴上点B所表示的数;根据点P运动到AB的中点,即可得出P点所表示的数:
(2)①设点P运动t秒时追上点Q,根据等量关系得到6t-2t=10,然后求解即可;
②分点P未超过点Q和点P超过点Q两种情况讨论,设运动时间为m,根据题意得到当P不超过Q,则(6-6m )-(-4-2m)=8,当P超过Q,则(-4-2m)-(6-6m )=8,求解即可.
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB-OA=10-6=4,
点B在原点左边,
∴数轴上点B所表示的数为-4;
∵数轴上点A表示的数为6,数轴上点B所表示的数为-4
∴AB的中点是:1
∴数轴上点P所表示的数为:1
故答案为:-4,1
(2)①设点P运动t秒时追上点Q,
则6t-2t=10,
解得t=2.5,
所以当点P运动2.5秒时,点P追上点Q;
②设当点P运动m秒时,点P与点Q间的距离为8个单位长度,数轴上点P所表示的数为:6-6m,数轴上点Q所表示的数为:-4-2m,
当P不超过Q,则(6-6m )-(-4-2m)=8,解得m=0.5;
当P超过Q,则(-4-2m)-(6-6m )=8,解得m=4.5;
所以当点P运动0.5秒或4.5秒时,点P与点Q间的距离为8个单位长度.