题目内容
【题目】如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.
(1)请直接写出y与x之间的函数关系式;
(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.
【答案】(1) y=-x2+3x;(2) 当x=3时,y有最大值,为4.5.
【解析】(1)由矩形的周长为12,AB=x,结合矩形的性质可得BC=6-x,然后由E,F,G,H为矩形ABCD的各边中点可得四边形EFGH的面积是矩形面积的一半,从而列出函数关系式;
(2)由关系式为二次函数以及二次项系数小于0可得四边形EFGH的面积有最大值,然后利用配方法将抛物线的解析式写成顶点式,从而得到x取什么值时,y取得最大值,以及最大值是多少.
(1)∵矩形ABCD的周长为12,AB=x,
∴BC=×12-x=6-x.
∵E,F,G,H为矩形ABCD的各边中点,
∴y=x(6-x)=-x2+3x,
即y=-x2+3x.
(2)y=-x2+3x=- (x-3)2+4.5,
∵a=-<0,
∴y有最大值,
当x=3时,y有最大值,为4.5.
练习册系列答案
相关题目