题目内容
【题目】已知抛物线y= x2+1(如图所示).
(1)填空:抛物线的顶点坐标是( , ),对称轴是;
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.
【答案】
(1)0;1;x=0(或y轴)
(2)
解:∵△PAB是等边三角形,
∴∠ABO=90°﹣60°=30°.
∴AB=20A=4.
∴PB=4.
解法一:把y=4代入y= x2+1,
得 x=±2 .
∴P1(2 ,4),P2(﹣2 ,4).
解法二:∴OB= =2
∴P1(2 ,4).
根据抛物线的对称性,得P2(﹣2 ,4)
(3)
解:∵点A的坐标为(0,2),点P的坐标为(2 ,4)
∴设线段AP所在直线的解析式为y=kx+b
∴
解得:
∴解析式为:y= x+2
设存在点N使得OAMN是菱形,
∵点M在直线AP上,
∴设点M的坐标为:(m, m+2)
如图,作MQ⊥y轴于点Q,则MQ=m,AQ=OQ﹣OA= m+2﹣2= m
∵四边形OAMN为菱形,
∴AM=AO=2,
∴在直角三角形AMQ中,AQ2+MQ2=AM2,
即:m2+( m)2=22
解得:m=±
代入直线AP的解析式求得y=3或1,
当P点在抛物线的右支上时,分为两种情况:
当N在右图1位置时,
∵OA=MN,
∴MN=2,
又∵M点坐标为( ,3),
∴N点坐标为( ,1),即N1坐标为( ,1).
当N在右图2位置时,
∵MN=OA=2,M点坐标为(﹣ ,1),
∴N点坐标为(﹣ ,﹣1),即N2坐标为(﹣ ,﹣1).
当P点在抛物线的左支上时,分为两种情况:
第一种是当点M在线段PA上时(PA内部)我们求出N点坐标为(﹣ ,1);
第二种是当M点在PA的延长线上时(在第一象限)我们求出N点坐标为( ,﹣1)
∴存在N1( ,1),N2(﹣ ,﹣1)N3(﹣ ,1),N4( ,﹣1)使得四边形OAMN是菱形
【解析】解:(1)顶点坐标是(0,1),对称轴是y轴(或x=O).
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
【题目】某超市销售进价为2元的雪糕,在销售中发现,此商品的日销售单价x(元)与日销售量y(根)之间有如下关系:
日销售单价x(元) | 3 | 4 | 5 | 6 |
日销售量y(根) | 40 | 30 | 24 | 20 |
(1)猜测并确定y和x之间的函数关系式;
(2)设此商品销售利润为W,求W与x的函数关系式,若物价局规定此商品最高限价为10元/根,你是否能求出商品日销售最大利润?若能请求出,不能请说明理由.
【题目】2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:
品名 | 甲种口罩 | 乙种口罩 |
进价(元/袋) | 20 | 25 |
售价(元/袋) | 26 | 35 |
(1)求该网店购进甲、乙两种口罩各多少袋?
(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?
【题目】小明在学习了数据的收集、整理与描述后,为妈妈整理记录了10月份的家庭支出情况,并绘制成如下尚不完整的统计图表,请你根据图表信息完成下列各题:
项目 | 物业费 | 伙食费 | 服装费 | 其他费 |
金额/元 | 800 | 400 |
(1)10月份小明家共支出多少元?
(2)在扇形统计图中,表示“其他费”的扇形圆心角为多少度?
(3)请将表格补充完整;
项目 | 物业费 | 伙食费 | 服装费 | 其他费 |
金额/元 | 800 | ________ | ________ | 400 |
(4)请将条形统计图补充完整.