题目内容
【题目】如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=_______;(直接写结果)
(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由;
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)
【答案】解:(1);(2)α的大小不会随点P的移动而变化,
理由:∵△APC是等边三角形,∴PA="PC," ∠APC=600,
∵△BDP是等边三角形,∴PB="PD," ∠BPD=600, ∴∠APC=∠BPD,
∴∠APD=∠CPB, ∴△APD≌△CPB, ∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=1200,∴∠QCP+∠QAC+∠ACP=1200, ∴∠AQC=1800-1200=600;
(3) 此时α的大小不会发生改变,始终等于600.
【解析】略
练习册系列答案
相关题目
【题目】某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,下表是随机抽取的10名男生分A、B两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负)。
A 组 | -1.5 | +1.5 | -1 | -2 | -2 |
B组 | +1 | +3 | -3 | +2 | -3 |
(1)请你估算从55名男生中合格的人数大约是多少?
(2)通过相关的计算,说明哪个组的成绩比较均匀;
(3)至少举出三条理由说明A组成绩好于B组成绩,或找出一条理由来说明B组好于A组。