题目内容
【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?直接写出猜想结论,不需说明理由.
【答案】(1)AB∥CD,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)①∠BAC=∠PQC+∠QPC ;②∠PQC+∠QPC+∠BAC=180°.
【解析】分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180°,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.再由AB∥CD得出∠BAC=∠ACQ.再由∠PQC+∠PCQ+∠ACQ=180°即可得出结论.
本题解析:
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°, ∴∠BAC+∠ACD=180°, ∴AB∥CD;
(2)∠BAE+ ∠MCD=90°;
过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°, ∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+∠MCD=90°;
(3)①∠BAC=∠PQC+∠QPC ;②∠PQC+∠QPC+∠BAC=180°.