题目内容
【题目】如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1 , M2 , M3 , …Mn分别为边B1B2 , B2B3 , B3B4 , …,BnBn+1的中点,△B1C1M1的面积为S1 , △B2C2M2的面积为S2 , …△BnCnMn的面积为Sn , 则Sn= . (用含n的式子表示)
【答案】
【解析】解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1 , M2 , M3 , …Mn分别为边B1B2 , B2B3 , B3B4 , …,BnBn+1的中点, ∴S1= ×B1C1×B1M1= ×1× = ,
S△B1C1M2= ×B1C1×B1M2= ×1× = ,
S△B1C1M3= ×B1C1×B1M3= ×1× = ,
S△B1C1M4= ×B1C1×B1M4= ×1× = ,
S△B1C1Mn= ×B1C1×B1Mn= ×1× = ,
∵BnCn∥B1C1 ,
∴△BnCnMn∽△B1C1Mn ,
∴S△BnCnMn:S△B1C1Mn=( )2=( )2 ,
即Sn: = ,
∴Sn= .
故答案为: .
由n个边长为1的相邻正方形的一边均在同一直线上,点M1 , M2 , M3 , …Mn分别为边B1B2 , B2B3 , B3B4 , …,BnBn+1的中点,即可求得△B1C1Mn的面积,又由BnCn∥B1C1 , 即可得△BnCnMn∽△B1C1Mn , 然后利用相似三角形的面积比等于相似比的平方,求得答案.
练习册系列答案
相关题目