题目内容
【题目】如图在Rt△ABC中,∠C=90°,BD平分∠ABC,过D作DE⊥BD交AB于点E,经过B,D,E三点作⊙O.
(1)求证:AC与⊙O相切于D点;
(2)若AD=15,AE=9,求⊙O的半径.
【答案】(1)见解析;(2)8.
【解析】
试题分析:(1)连接OD,则有∠1=∠2,而∠2=∠3,得到∠1=∠3,因此OD∥BC,又由于∠C=90°,所以OD⊥AD,即可得出结论.
(2)根据OD⊥AD,则在RT△OAD中,OA2=OD2+AD2,设半径为r,AD=15,AE=9,得到(r+9)2=152+r2,解方程即可.
(1)证明:连接OD,如图所示:
∵OD=OB,
∴∠1=∠2,
又∵BD平分∠ABC,
∴∠2=∠3,
∴∠1=∠3,
∴OD∥BC,
而∠C=90°,
∴OD⊥AD,
∴AC与⊙O相切于D点;
(2)解:∵OD⊥AD,
∴在RT△OAD中,OA2=OD2+AD2,
又∵AD=15,AE=9,设半径为r,
∴(r+9)2=152+r2,
解方程得,r=8,
即⊙O的半径为8.
练习册系列答案
相关题目