题目内容

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

【小题1】(1)若取AE的中点P,求证:BP=CF;
【小题2】(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
【小题3】(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.




【小题1】解:(1)∵ AE = BE,AP = EP
∴ BE = 2PE,AB = 4PE,BP = 3PE…………(1分)
∵ AB = BC,BE =" BF     " ∴ BC = 4PE,BF = 2PE
∴ CF = 6PE…………(2分)       ∴
【小题2】(2)存在…………(4分)
因为将绕点B顺时针方向旋转一周,E、F分别在以点B为圆心,BE为半径的圆周上,如图1,因此过A点做圆B的切线,设切点是点E,此时,有AE∥BF。
当圆B的切线AE在AB的右侧时,如图1
∵ AE∥BF∴∠AEB = ∠EBF = 90°     ∵ BE = AB∴∠BAE = 30°
∴∠ABE = 60°,即旋转角是60°…………(6分)
当圆B的切线AE在AB的左侧时,如图2
如图2,∵ AE∥BF
∴∠AEB + ∠EBF = 180°∴∠AEB = 90°
∵ BE = AB     ∴∠BAE = 30°
∴∠ABE = 60°,即旋转角是300°
【小题3】(3)延长BP到点G,使BP=PG,连结AG
∴△APG ≌△BPE
∴ AG = BE,PG = BP,∠G = ∠PBE
∵ BE = BF   ∴ AG = BF
∵△BEF绕点B顺时针旋转  ∴∠ABE = ,∠CBF = 180°-
∵∠G = ∠PBE    ∴∠G + ∠ABP =
∴∠GAB = 180°-   ∴∠GAB = ∠CBF
又∵ AB = BC,AG = BF
∴△GAB ≌△FBC    ∴ BG = CF
    ∴…………(11分)
延长PB,与CF相交于点H
∵△GAB ≌△FBC    ∴∠ABP = ∠BCH
∵∠ABP + ∠CBH = 90°   ∴∠BCH + ∠CBH =90°
∴ BH⊥CF    即 BP⊥CF…………(14分)

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网