题目内容
【题目】在 Rt△ABC 中,∠ACB=90°,BE 平分∠ABC,D 是边 AB 上一点,以 BD为直径的⊙O 经过点 E,且交 BC 于点 F.
(1)求证:AC 是⊙O 的切线;
(2)若 BC=8,⊙O 的半径为 5,求 CE 的长.
【答案】(1)见解析;(2)4
【解析】
(1)连接OE,证明∠OEA=90°即可;
(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH的长,进而求出CE的长.
(1)证明:连接OE.
∵OE=OB,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBC,
∴∠EBC=∠OEB,
∴OE∥BC,
∴∠OEA=∠ACB,
∵∠ACB=90°,
∴∠OEA=90°,
∴AC是⊙O的切线;
(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,
由题意可知四边形OECH为矩形,
∴OH=CE,OE=CH=5,
∵BC=8,
∴BH=BC-HC= BC-OE =8-5 =3,
在Rt△BHO中,OB=5,
∴OH=,
∴CE=OH=4.
练习册系列答案
相关题目