题目内容
【题目】如图,反比例函数y=的图象经过点(-2,2),直线y=-x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于A,B两点.
(1)求k的值;
(2)当b=-2时,求△OAB的面积,并求出交点P的坐标;
(3)连接OQ,是否存在实数b使S△OBQ=S△OAB?若存在,请求出b的值;若不存在,请说明理由.
【答案】(1)-4;(2) (--1, -1) ;(3)存在.
【解析】试题分析:(1)根据反比例函数的图象上点的坐标特征易得k=-4;
(2)当b=-2时,直线解析式为y=-x-2,则利用坐标轴上点的坐标特征可求出C(-2,0),D(0,-2),然后根据三角形面积公式求解;
(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(-b,0),利用直线解析式可得到Q(-b,2b),再根据反比例函数的图象上点的坐标特征得到-b2b=-4,然后解方程即可得到满足条件的b的值.
试题解析:(1)∵反比例函数y=的图象经过点A(-1,4),
∴k=-1×4=-4;
(2)当b=-2时,直线解析式为y=-x-2,
∵y=0时,-x-2=0,解得x=-2,
∴C(-2,0),
∵当x=0时,y=-x-2=-2,
∴D(0,-2),
∴S△OCD=×2×2=2;
(3)存在.
当y=0时,-x+b=0,解得x=b,则C(b,0),
∵S△ODQ=S△OCD,
∴点Q和点C到OD的距离相等,
而Q点在第四象限,
∴Q的横坐标为-b,
当x=-b时,y=-x+b=2b,则Q(-b,2b),
∵点Q在反比例函数y=-的图象上,
∴-b2b=-4,解得b=-或b=(舍去),
∴b的值为-.
【题目】阅读下列材料:
实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.
小明根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).
下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x>0)的变化情况.
饮酒后的时间x(小时) | … | 1 | 2 | 3 | 4 | 5 | 6 | … | |||||
血液中酒精含量y (毫克/百毫升) | … | 150 | 200 | 150 | 45 | … |
下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;
(2)观察表中数据及图象可发现此函数图象在直线x=两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;
(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完250毫升低度白酒,第二天早上6:30能否驾车去上班?请说明理由.