题目内容

【题目】在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=CFF=45°

(1) ADF绕点A顺时针旋转90 °,得到ABG(如图1),求证:BE+DF=EF;

(2) 若直线EFAB、AD的延长线分别交于点M、N(如图2),求证:

(3) 将正方形改为长与宽不相等的矩形,其余条件不变(如图3),直接写出线段EF、BE、DF之间的数量关系.

【答案】(1)见解析;(2)见解析;(3) =2.

【解析】

(1)根据旋转的性质可知AF=AG,EAF=GAE=45°,故可证AEG≌△AEF;

(2)将ADF绕着点A顺时针旋转90°,得到ABG,连结GM.由(1)知AEG≌△AEF,则EG=EF.再由BME、DNF、CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2

(3)延长EFAB延长线于M点,交AD延长线于N点,将ADF绕着点A顺时针旋转90°,得到AGH,连结HM,HE.由(1)知AEH≌△AEF,结合勾股定理以及相等线段可得(GH+BE)2+(BE-GH)2=EF2,所以2(DF2+BE2)=EF2

(1)证明:∵△ADF绕着点A顺时针旋转90°,得到ABG,

AF=AG,FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

AGEAFE中,

∴△AGE≌△AFE(SAS);

(2)证明:设正方形ABCD的边长为a.

ADF绕着点A顺时针旋转90°,得到ABG,连结GM.

ADF≌△ABG,DF=BG.

由(1)知AEG≌△AEF,

EG=EF.

∵∠CEF=45°,

∴△BME、DNF、CEF均为等腰直角三角形,

CE=CF,BE=BM,NF=DF,

a-BE=a-DF,

BE=DF,

BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

EG2=ME2+MG2

EG=EF,MG=BM=DF=NF,

EF2=ME2+NF2

(3)解:EF2=2BE2+2DF2

如图所示,延长EFAB延长线于M点,交AD延长线于N点,

ADF绕着点A顺时针旋转90°,得到AGH,连结HM,HE.

由(1)知AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2

即(GH+BE)2+(BM-GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE-GH)2=EF2

2(DF2+BE2)=EF2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网