题目内容
【题目】如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.
【答案】
【解析】
由抛物线的解析式易求出点A、B、C的坐标,然后利用待定系数法求出直线BC的解析式,过点P作PQ∥x轴交直线BC于点Q,则△PQK∽△ABK,可得,而AB易求,这样将求的最大值转化为求PQ的最大值,可设点P的横坐标为m,注意到P、Q的纵坐标相等,则可用含m的代数式表示出点Q的横坐标,于是PQ可用含m的代数式表示,然后利用二次函数的性质即可求解.
解:对二次函数,
令x=0,则y=3,令y=0,则,
解得:,
∴C(0,3),A(-1,0),B(4,0),
设直线BC的解析式为:,
把B、C两点代入得:,
解得:,
∴直线BC的解析式为:,
过点P作PQ∥x轴交直线BC于点Q,如图,
则△PQK∽△ABK,
∴,
设P(m,),
∵P、Q的纵坐标相等,
∴当时,,
解得:,
∴,
又∵AB=5,
∴.
∴当m=2时,的最大值为.
故答案为:.
练习册系列答案
相关题目
【题目】为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
成绩 | 频数 | 频率 |
优秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
(1)该校初三学生共有多少人?
(2)求表中a,b,c的值,并补全条形统计图.
(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.