题目内容

【题目】如图,已知AB⊙O的直径,AD,BD⊙O的弦,BC⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.

(1)求证:DC⊙O的切线;

(2)若⊙O半径为4,∠OCE=30°,求△OCE的面积.

【答案】(1)详见解析;(2)16.

【解析】

(1)首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;

(2)设⊙O的半径为R,则OE=R+1,在Rt△ODE中,利用勾股定理列出方程,求解即可.

(1)证明:连接DO,如图,

∵AD∥OC,

∴∠DAO=∠COB,∠ADO=∠COD,

∵OA=OD,

∴∠DAO=∠ADO,

∴∠COD=∠COB.

△COD△COB

,

COD≌COB(SAS),

CDO=CBO.

∵BC⊙O的切线,

CBO=90°,

CDO=90°,

∴ODCE,

D⊙O上,

∴CD⊙O的切线

(2)解:由(1)可知∠OCB=∠OCD=30°,

DCB=60°,

BCBE,

E=30°,

Rt△ODE中,∵tanE=

∴DE==4

同理DC=OD=4

∴SOCE=ODCE=×4×8=16

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网