题目内容
【题目】O为直线DA上一点,OB⊥OF,EO是∠AOB的平分线.
(1)如图(1),若∠AOB=130°,求∠EOF的度数;
(2)若∠AOB=α,90°<α<180°,求∠EOF的度数;
(3)若∠AOB=α,0°<α<90°,请在图(2)中画出射线OF,使得(2)中∠EOF的结果仍然成立.
【答案】(1)25°;(2)90;(3)90.
【解析】
试题分析:(1)首先利用角平分线的定义可得∠AOE的度数,由垂直的定义得∠BOF=90°,易得∠AOF,可得∠EOF;
(2)首先利用角平分线的定义可得∠AOE=,由垂直的定义得∠BOF=90°,易得∠AOF=α﹣90°,可得∠EOF;
(3)根据题意OB⊥OF,使得(2)中∠EOF的结果仍然成立,画出射线OF即可,再结合图形同理(2)可得结果.
解:(1)∵∠AOB=130°,EO是∠AOB的平分线,
∴=65°,
∵OB⊥OF,
∴∠BOF=90°,
∴∠AOF=∠AOB﹣∠BOF=130°﹣90°=40°,
∴∠EOF=∠AOE﹣∠AOF=65°﹣40°=25°;
(2)∵∠AOB=α,90°<α<180°,EO是∠AOB的平分线,
∴∠AOE=,
∵∠BOF=90°,
∴∠AOF=α﹣90°,
∴∠EOF=∠AOE﹣∠AOF=﹣(α﹣90°)=90;
(3)如图,∵∠AOB=α,0°<α<90°,
∴∠BOE=∠AOE=,
∵∠BOF=90°,
∴∠EOF=∠BOF﹣∠BOE=90.
练习册系列答案
相关题目