题目内容
【题目】如图,在Rt△ABC中,∠C=90°,O是AB上一点, ⊙O与BC相切于点E,交AB于点F,连接AE,若AF=2BF,则∠CAE的度数是__.
【答案】30°
【解析】连接OE,EF
利用切线性质得∠OEB=90,再证,AC∥OE.,得∠CAE=∠AEO,根据直角三角形性质,由AF=2BF=2OF,得EF=OF=OE, 得∠OEF=60,所以,∠OEF=60, 所以∠AEO=90-∠OEF=30.
所以,OF=BF,
连接OE,EF
因为,⊙O与BC相切于点E,
所以,∠OEB=90,又∠C=90°,
所以,AC∥OE.,
所以∠CAE=∠AEO,
因为,AF=2BF=2OF,
所以,OF=BF,
所以,EF=OF=OE,
所以,三角形OEF是等边三角形,
所以,∠OEF=60,
所以,∠AEO=90-∠OEF=30
所以,∠CAE=∠AEO=30
故答案为:30
练习册系列答案
相关题目
【题目】2011年9月1日,长春首届航空开放日在长春大房身机场正式举行,空军八一飞行表演队的新换装歼-10飞机,进行了精彩的特技飞行表演,其中一架飞机起飞0.5千米后的高度变化如下表:
高度变化 | 上升4.2 | 下降3.5 | 上升1.4 | 下降1.2 |
记作 | +4.2 | -3.5 | +1.4 | -1.2 |
(1)此时这架飞机飞离地面的高度是多少千米?
(2)如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.6干米,下降2.8千米,再上升1.5千米,最后下降0.9千米.若飞机平均上升1干米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这4个特技表演过程中,一共消耗了多少升燃油?