题目内容
【题目】综合题
(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________(请直接写出结果).
【答案】(1);(2).
【解析】
(1)根据题意画出树状图,根据树状图求得总共出现的等可能的结果,以及第二次传球后球回到甲手里的结果,根据概率公式即可解答;(2)第三步传球的结果共有n3次,传给甲的结果有n(n-1)次,根据概率公式,就可以得出第三次传球后球回到甲手里的概率。
(1)画树状图:
共有9种等可能的结果,其中符合要求的结果有3种,
∴P(第2次传球后球回到甲手里)= .
(2)第三步传球的结果共有n3次,传给甲的结果有n(n-1)次,第三次传球后球回到甲手里的概率是 .
故答案为:.
【题目】初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中名学生每周上网的时间,算得这些学生平均每周上网时间为小时;小杰从全体名初二学生名单中随机抽取了名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为小时.小丽与小杰整理各自样本数据,如下表所示.
时间段(小时/周) | 小丽抽样人数 | 小杰抽样人数 |
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:
你认为哪位学生抽取的样本具有代表性?答:________;估计该校全体初二学生平均每周上网时间为________小时;
根据具有代表性的样本,把上图中的频数分布直方图补画完整;
在具有代表性的样本中,中位数所在的时间段是________小时/周;
专家建议每周上网小时以上(含小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?