题目内容

【题目】已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l: 对称.
(1)求A、B两点坐标,并证明点A在直线l上;
(2)求二次函数解析式;
(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.

【答案】
(1)解:依题意,得ax2+2ax﹣3a=0(a≠0),

两边都除以a得:

即x2+2x﹣3=0,

解得x1=﹣3,x2=1,

∵B点在A点右侧,

∴A点坐标为(﹣3,0),B点坐标为(1,0),

答:A、B两点坐标分别是(﹣3,0),(1,0)

证明:∵直线l:

当x=﹣3时,

∴点A在直线l上


(2)解:∵点H、B关于过A点的直线l: 对称,

∴AH=AB=4,

过顶点H作HC⊥AB交AB于C点,

∴顶点

代入二次函数解析式,解得

∴二次函数解析式为

答:二次函数解析式为


(3)解:直线AH的解析式为

直线BK的解析式为

解得

则BK=4,

∵点H、B关于直线AK对称,K(3,2 ),

∴HN+MN的最小值是MB,

过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,

则QM=MK, ,AE⊥QK,

∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,

∵BK∥AH,

∴∠BKQ=∠HEQ=90°,

由勾股定理得QB= = =8,

∴HN+NM+MK的最小值为8,

答:HN+NM+MK和的最小值是8.


【解析】(1)求出方程ax2+2ax﹣3a=0(a≠0),即可得到A点坐标和B点坐标;把A的坐标代入直线l即可判断A是否在直线上;(2)根据点H、B关于过A点的直线l: 对称,得出AH=AB=4,过顶点H作HC⊥AB交AB于C点,求出AC和HC的长,得出顶点H的坐标,代入二次函数解析式,求出a,即可得到二次函数解析式;(3)解方程组 ,即可求出K的坐标,根据点H、B关于直线AK对称,得出HN+MN的最小值是MB,过点K作直线AH的对称点Q,连接QK,交直线AH于E,得到BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,由勾股定理得QB=8,即可得出答案.
【考点精析】解答此题的关键在于理解解二元一次方程组的相关知识,掌握二元一次方程组:①代入消元法;②加减消元法,以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)当均为正整数时,若,用含m、n的式子分别表示,得       

(2)利用所探索的结论,找一组正整数,填空:    =(      )2

(3)若,且均为正整数,求的值.

【答案】(1);(2)4,2,1,1(答案不唯一);(3)=713

【解析】分析:(1)由a+b=(m+n)2,展开比较系数可得答案;

(2)取m=1,n=1,可得ab的值,可得答案;

(3)由题意得mn的方程,解方程可得mn,可得a值.

详解:(1)∵a+b=(m+n)2

∴a+b=m2+3n2+2mn

∴a=m2+3n2,b=2mn.

故答案为:m2+3n2,2mn.

(2)设m=1,n=1,

∴a=m2+3n2=4,b=2mn=2.

故答案为4、2、1、1.

(3)由题意,得:

a=m2+3n2,b=2mn

∵4=2mn,且m、n为正整数,

∴m=2,n=1或者m=1,n=2,

∴a=22+3×12=7,或a=12+3×22=13.

点睛:本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.

型】解答
束】
28

【题目】如图1,已知点A(a,0),B(0,b),且a、b满足

□ABCD的边ADy轴交于点E,且EAD中点,双曲线经过C、D两点.

(1)若点D点纵坐标为t,则C点纵坐标为 (含t的代数式表示),k的值为

(2)点P在双曲线上,点Qy轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;

(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,MHT的中点,MNHT,交ABN,连接FN,当TAF上运动时,试判断∠ATH与∠AFN之间的数量关系,并说明理由。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网