题目内容
【题目】如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为 .
【答案】
【解析】解:作出D关于AB的对称点D′,连接OC,OD′,CD′. 又∵点C在⊙O上,∠CAB=30°,D为 的中点,即 = ,
∴∠BAD′= ∠CAB=15°.
∴∠CAD′=45°.
∴∠COD′=90°.则△COD′是等腰直角三角形.
∵OC=OD′= AB=1,
∴CD′= .
所以答案是: .
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对垂径定理的理解,了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
练习册系列答案
相关题目
【题目】下表是博文学校初三一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).
慧慧 | 116 | 124 | 130 | 126 | 121 | 127 | 126 | 122 | 125 | 123 |
聪聪 | 122 | 124 | 125 | 128 | 119 | 120 | 121 | 128 | 114 | 119 |
回答下列问题:
(1)分别求出慧慧和聪聪成绩的平均数;
(2)分别计算慧慧和聪聪两组数据的方差;
(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;
(4)由于初三二班、初三三班和初三四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三二班和初三三班的概率.