题目内容
【题目】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E,A在直线DC同侧,连接AE.求证:
(1)△AEC≌BDC;
(2)AE∥BC.
【答案】见解析
【解析】
试题分析:(1)根据等边三角形性质推出BC=AC,CD=CE,∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△AEC≌△BDC;
(2)根据△AEC≌△BDC推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.
解:(1)∵△ABC和△DEC是等边三角形,
∴BC=AC,CD=CE,∠BCA=∠ECD=60°,∠B=60°,
∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,
即∠BCD=∠ACE,
在△AEC和△BDC中,
,
∴△AEC≌△BDC(SAS).
(2)∵△AEC≌△BDC,
∴∠EAC=∠B,
∵∠B=60°,
∴∠EAC=∠B=60°=∠ACB,
∴AE∥BC.
练习册系列答案
相关题目