题目内容
【题目】如图,在四边形 ABCD 中,∠C+∠D=210°,E、F 分别是 AD,BC 上的点,将四边形 CDEF 沿直线 EF 翻折,得到四边形 C′D′EF, C′F 交 AD 于点 G,若△EFG 有两个角相等,则∠EFG=______ °.
【答案】40 或 50
【解析】
作出辅助线,利用翻折前后的角相等得到∠1+∠GFC=∠1+2∠3=150°,再由三角形的内角和定理得到∠3=∠2-30°,分情况讨论即可解题,见详解.
解:连接EF,如下图,由翻折可知,∠3=∠EFC,
∵∠C+∠D=210°,
∴易得∠1+∠GFC=∠1+2∠3=150°,
∵∠1=180°-∠2-∠3,代入式得∠3=∠2-30°,
把代入得∠1+2∠2=210°,
若∠1=∠2,由式可得,∠1=∠2=70°,∠3=40°,
若∠1=∠3,由式可得,∠1=∠3=50°,∠2=80°,
若∠2=∠3,则不成立,说明此种情况不存在,
综上∠EFG=40°或50°.
练习册系列答案
相关题目