题目内容
【题目】如图,在△ABC中,∠A=β度,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线交于点A2,得∠A2,…∠A2017BC与∠A2017CD的平分线交于点A2018,得∠A2018.则∠A2018=_____度.
【答案】
【解析】
设∠ABC=2α,所以∠ACD=2α+β,由角平分线的性质可知∠A1CD=∠ACD=+α,∠A1BC=∠ABC=α,由三角形的外角性质可知∠A1=,同理可求出∠A2=,∠A3=,根据规律即可求出∠A2018=.
设∠ABC=2α,
∴∠ACD=2α+β,
∵∠ABC与∠ACD的平分线交于点A1
∴∠A1CD=∠ACD=+α,∠A1BC=∠ABC=α,
∵∠A1CD=∠A1BC+∠A1,
∴∠A1=
同理可得:∠A2=,∠A3=,
∴∠A2018=
故答案为:.
【题目】重庆格力厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸r的范围为176≤r≤185的产品为合格),随机各抽取了20个样品进行检测,过程如下:
收集数据(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183
整理数据
级别 频数 | 165.5~ 170.5 | 170.5~ 175.5 | 175.5~ 180.5 | 180.5~ 185.5 | 185.5 ~190.5 | 190.5~ 195.5 |
甲车间 | 2 | 4 | a | b | 2 | 1 |
乙车间 | 1 | 2 | 9 | 6 | 2 | 0 |
分析数据:
车间 | 平均数 | 众数 | 中位数 | 方差 |
甲车间 | 180 | 185 | 180 | 43.1 |
乙车间 | 180 | 180 | c | 22.6 |
应用数据
(2)请写出表中a= ,b= ,c= mm.
(2)估计甲车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.