题目内容

在一平直河岸同侧有两个村庄,的距离分别是3km和2km,.现计划在河岸上建一抽水站,用输水管向两个村庄供水.
方案设计
某班数学兴趣小组设计了两种铺设管道方案:图(1)是方案一的示意图,设该方案中管道长度为,且(其中于点);图(2)是方案二的示意图,设该方案中管道长度为,且(其中点与点关于对称,交于点).

(1)观察计算
在方案一中,        km(用含的式子表示);
在方案二中,组长小宇为了计算的长,作了如图(3)所示的辅助线,请你按小宇同学的思路计算,        km(用含的式子表示).
(2)探索归纳
①当时,比较大小:(填“>”、“=”或“<”);
时,比较大小:(填“>”、“=”或“<”);
②请你参考方框中的方法指导,就(当时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?
(1);   (2)
(2)①;    

,即时,
,即时,
,即时,
综上可知:当时,选方案二;当时,选方案一或方案二;当时,选方案一.
观察计算:(1)由题意可以得知管道长度为d1=PB+BA(km),根据BP⊥l于点P得出PB=2,故可以得出d1的值为a+2.
(2)由条件根据勾股定理可以求出KB的值,由轴对称可以求出A′K的值,在Rt△KBA′由勾股定理可以求出A′B的值就是管道长度.
探索归纳:(1)①把代入就可以比较其大小;
②把代入就可以比较其大小;
(2)分类进行讨论当时就可以分别求出a的范围,从而确定选择方案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网