题目内容
【题目】如图,点A是半径为3的⊙O上的点,
(1)尺规作图:作⊙O的内接正六边形ABCDEF;
(2)求(1)中的长.
【答案】(1)见试题解析;(2)2π.
【解析】
试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;
(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.
试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;
(2)∵正六边形ABCDEF是⊙O的内接正六边形
∴∠AOC=120°,
∵⊙O的半径为3,
∴的长为: =2π.
练习册系列答案
相关题目
【题目】小亮同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了若干户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图)
月均用水量(单位:t) | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | a | b |
5≤x<6 | 10 | 20% |
6≤x<7 | c | 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)频数分布表中a= ,b= .(填百分比),c= ;补全频数分布直方图.
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有 户;
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列表法或画树状图求抽取出的2个家庭来自不同范围的概率.