题目内容
【题目】如图,直线分别与轴、轴交于两点,与直线交于点.
(1)点坐标为( , ),B为( , ).
(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,若四边形是平行四边形时,求出此时的值.
(3)若点为轴正半轴上一点,且,则在轴上是否存在一点,使得四个点能构成一个梯形若存在,求出所有符合条件的点坐标;若不存在,请说明理由.
【答案】(1)点的坐标是,点的坐标是;(2);(3)符合条件的点坐标为
【解析】
(1)先将点C坐标代入直线l1中,求出直线l1的解析式,令x=0和y=0,即可得出结论;
(2)先求出直线l2的解析式,表示出点E,F的坐标,在判断出OB=EF,建立方程求解,即可得出结论;
(3)先求出点P的坐标,分两种情况求出直线PQ,AQ的解析式,即可得出结论.
解:(1)∵点C(2,)在直线l1:上,
∴,
∴直线l1的解析式为,
令x=0,∴y=3,∴B(0,3),
令y=0,∴,∴x=4,∴A(4,0),
故答案为:点的坐标是,点的坐标是.
(2)∵轴,点的横坐标为,∴点的横坐标也为,
∵直线与直线交于点
∵点是直线的一点,
∴点E的坐标是,
∵点是直线上的一点,
∴点的坐标是
∵当
(3)若点为轴正半轴上一点,,,
∴,.
当时
直线AB的解析式为:
直线PQ的解析式为
∴点的坐标是
当时
直线BP的解析式为,
直线AQ的解析式为
∴点的坐标是
综上,在平面直角坐标系中存在点,使得四个点能构成一个梯形,符合条件的点坐标为
【题目】光明中学组织全校1000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).
分组 | 频数 | 频率 |
50.5~60.5 | 10 | a |
60.5~70.5 | b | |
70.5~80.5 | 0.2 | |
80.5~90.5 | 52 | 0.26 |
90.5~100.5 | 0.37 | |
合计 | c | 1 |
请根据以上提供的信息,解答下列问题:
(1)直接写出频数分布表中a,b,c的值,补全频数分布直方图.
(2)上述学生成绩的中位数落在哪一组范围内?
(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1000名学生中约有多少名获奖?