题目内容
【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
①只要证明△ADE为等腰直角三角形即可
②只要证明△AEF≌△CBF(SAS)即可;
③假设BF2=FGFC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,
④由△ADF∽△GBF,可得,由EG∥CD,推出,推出,由AD=AE,EGAE=BGAB,故④正确,
①DE平分∠ADC,∠ADC为直角,
∴∠ADE=×90°=45°,
∴△ADE为等腰直角三角形,
∴AD=AE,
又∵四边形ABCD矩形,
∴AD=BC,
∴AE=BC
②∵∠BFE=90°,∠BFE=∠AED=45°,
∴△BFE为等腰直角三角形,
∴则有EF=BF
又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,
∴∠AEF=∠CBF
在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,
∴△AEF≌△CBF(SAS)
∴AF=CF
③假设BF2=FGFC,则△FBG∽△FCB,
∴∠FBG=∠FCB=45°,
∵∠ACF=45°,
∴∠ACB=90°,显然不可能,故③错误,
④∵∠BGF=180°-∠CGB,∠DAF=90°+∠EAF=90°+(90°-∠AGF)=180°-∠AGF,∠AGF=∠BGC,
∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,
∴△ADF∽△GBF,
∴,
∵EG∥CD,
∴,
∴,∵AD=AE,
∴EGAE=BGAB,故④正确,
故选C.
【题目】在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级 | 平均分 | 中位数 | 方差 |
甲班 | |||
乙班 |
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号