题目内容
【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B. C.E在同一条直线上,连结DC.
(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.
【答案】(1)△ACD≌△ABE,理由见解析;(2)见解析
【解析】
(1)由等腰直角三角形的性质易得AB=AC,AE=AD,∠BAC=∠EAD=90°,然后推出∠BAE=∠CAD,利用SAS判定△ABE≌△ACD;
(2)由全等三角形得∠ACD=∠ABE=45°,易得∠BCD=90°,所以DC⊥BE.
(1)图2中△ACD≌△ABE.
证明:∵△ABC与△AED均为等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD.
在△ABE与△ACD中,
∴△ABE≌△ACD(SAS);
(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°,
∴DC⊥BE.
练习册系列答案
相关题目