题目内容
【题目】如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.
【答案】(4,).
【解析】
由于函数y=(x>0常数k>0)的图象经过点A(1,2),把(1,2)代入解析式求出k=2,然后得到AC=2.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
∵函数y=(x>0、常数k>0)的图象经过点A(1,2),
∴把(1,2)代入解析式得到2=,
∴k=2,
设B点的横坐标是m,
则AC边上的高是(m-1),
∵AC=2
∴根据三角形的面积公式得到×2(m-1)=3,
∴m=4,把m=4代入y=,
∴B的纵坐标是,
∴点B的坐标是(4,).
故答案为:(4,).
练习册系列答案
相关题目