题目内容
【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=,求CD的长.
【答案】(1)证明过程见解析;(2)
【解析】试题分析:(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论.
试题解析:(1)∵ED=EC, ∴∠EDC=∠C, ∵∠EDC=∠B, ∴∠B=∠C, ∴AB=AC;
(2)连接AE, ∵AB为直径, ∴AE⊥BC, 由(1)知AB=AC, ∴BE=CE=BC=,
∵CECB=CDCA,AC=AB=4, ∴2=4CD, ∴CD=.
练习册系列答案
相关题目