题目内容

【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.

(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.

【答案】
(1)解:连接OE,

∵OA=OE,

∴∠A=∠AEO,

∵BF=EF,

∴∠B=∠BEF,

∵∠ACB=90°,

∴∠A+∠B=90°,

∴∠AEO+∠BEF=90°,

∴∠OEG=90°,

∴EF是⊙O的切线;


(2)解:∵AD是⊙O的直径,

∴∠AED=90°,

∵∠A=30°,

∴∠EOD=60°,

∴∠EGO=30°,

∵AO=2,

∴OE=2,

∴EG=2

∴阴影部分的面积= 2×2 =2 π.


【解析】(1)先观察,再理性论证.EF与圆有公共点,可连结OE,证明OE与EF垂直,可证∠AEO+∠BEF=90°;(2)阴影部分面积较小,可采用作差法,转化为直角三角形OEG面积减去扇形OED的面积即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网