题目内容
【题目】已知a是最大的负整数,b是-5的相反数,c=,且a、b、c分别是点A、B、C在数轴上对应的数.若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度.
(1)求a、b、c的值;
(2)P、Q同时出发,求运动几秒后,点P可以追上点Q?
(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒6个单位长度,点M追上点Q后立即返回沿数轴负方向运动,追上后点M再运动几秒,M到Q的距离等于M到P距离的两倍?
【答案】(1)a=-1,b=5,c=-3;(2)t=3s;(3)t=或s
【解析】
(1)由已知条件即可确定a、b、c的值;
(2)由题意,可知A点表示的数是-1,B点表示的数是5,设运动t秒后,P点对应的数是-1+3t,Q点对应的数是5+t,相遇时两点表示同一个数;
(3),t秒后,M点对应的数是-3+6t,可求M、Q相遇时间,当M向数轴负半轴运动后,M点对应的数是6.6-6(t-1.6)=-6t+16.2,根据题意列出方程7t-11.2=2|9t-17.2|,再结合t的范围求解.
解:(1)∵a是最大的负整数,
∴a=-1,
∵b是-5的相反数,
∴b=5,
∵c=-|-3|,
∴c=-3;
(2)由题意,可知A点表示的数是-1,B点表示的数是5,
设运动t秒后,P点对应的数是-1+3t,Q点对应的数是5+t,
P点追上Q点时,两个点表示的数相同,
∴-1+3t=5+t,
∴t=3,
∴求运动3秒后,点P可以追上点Q;
(3)由(2)知,t秒后,M点对应的数是-3+6t,
当M点追上Q点时,5+t=-3+6t,
∴t=1.6,
此时M点对应的数是6.6,
此后M点向数轴负半轴运动,M点对应的数是6.6-6(t-1.6)=-6t+16.2,
MQ=5+t-(-6t+16.2)=7t-11.2,
MP=|-6t+16.2+1-3t|=|9t-17.2|,
由题意,可得7t-11.2=2|9t-17.2|,
当时,7t-11.2=18t-34.4,
∴t=
当时,7t-11.2=-18t+34.4,
∴t=;
∴t=或t=,
∴,,
∴追上后,再经过s或s,M到Q的距离等于M到P距离的两倍.