题目内容
【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
【答案】(1)证明见解析;(2)MD长为5.
【解析】
(1)利用矩形性质,证明BMDN是平行四边形,再结合MN⊥BD,证明BMDN是菱形.
(2)利用BMDN是菱形,得BM=DM,设,则,在中使用勾股定理计算即可.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵BD的垂直平分线MN
∴BO=DO,
∵在△DMO和△BNO中
∠MDO=∠NBO,BO=DO,∠MOD=∠NOB
∴△DMO ≌ △BNO(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BMDN是平行四边形,
∵MN⊥BD
∴BMDN是菱形
(2)∵四边形BMDN是菱形,
∴MB=MD,
设MD=x,则MB=DM=x,AM=(8-x)
在Rt△AMB中,BM2=AM2+AB2
即x2=(8-x)2+42,
解得:x=5
答:MD长为5.
【题目】珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:
月均用水量(单位:吨 | 频数 | 频率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合计 | d | 1.00 |
(1)b= ,c= ,并补全频数分布直方图;
(2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;
(3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?