题目内容
【题目】完成下面的证明.(在括号中注明理由)
已知:如图,BE∥CD,∠A=∠1,
求证:∠C=∠E.
证明:∵BE∥CD,(已知)
∴∠2=∠C,( )
又∵∠A=∠1,(已知)
∴AC∥ ,( )
∴∠2= ,( )
∴∠C=∠E(等量代换)
【答案】两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等
【解析】
首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.
证明:∵BE∥CD,(已知)
∴∠2=∠C,(两直线平行,同位角相等)
又∵∠A=∠1,(已知)
∴AC∥DE,(内错角相等,两直线平行)
∴∠2=∠E,(两直线平行,内错角相等)
∴∠C=∠E(等量代换).
故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.
练习册系列答案
相关题目