题目内容
【题目】如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE.
(1)求证:BE=CE
(2)如图2,若BE的延长线交AC于点F,且BF ⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF
(3)在(2)的条件下,若∠BAC=45,判断△CFE的形状,并说明理由.
【答案】证明见解析
【解析】试题分析:(1)由条件证明△ABE≌△ACE即可;
(2)利用垂直的定义可求得∠CAD+∠C=∠CBF+∠C=90°,可证得结论;
(3)由条件可证明△AEF≌△BCF,可得AF=BF,可得出结论.
解:(1)∵AB=AC,D是BC的中点
∴∠BAE=∠CAE
在△ABE和△ACE中,
∴△ABE≌△ACE(SAS)
∴BE=CE
(2)∵AB=AC,点D是BC的中点
∴AD⊥BC
∴∠CAD+∠C=90°
∵BF⊥AC
∴∠CBF+∠C=90°
图一 图二
∴∠CAD=∠CBF
(3)∵∠BAC=45°,BF⊥AF
∴△ABF为等腰直角三角形
∴AF=BF
在△AEF和△BCF中,
∴△AEF≌△BCF(ASA).
∴EF=CF
∵∠CFE=90°
∴△CFE为等腰直角三角形.
练习册系列答案
相关题目
【题目】数学李老师给学生出了这样一个问题:探究函数y= 的图象与性质,小斌根据学习函数的经验,对函数y= 的图象与性质进行了探究.下面是小斌的探究过程,请您补充完成:
(1)函数y= 的自变量x的取值范围是:
(2)列出y与x的几组对应值,请直接写出m的值,m= .
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … |
|
|
| 2 | 3 | ﹣1 | 0 |
|
|
|
|
| … |
(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出函数y= 的一条性质.